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Physical differences in small molecule binding between enzymes and nonenzymes were found through mining
the protein-ligand database, Binding MOAD (Mother of All Databases). The data suggest that divergent
approaches may be more productive for improving the affinity of ligands for the two classes of proteins.
High-affinity ligands of enzymes are much larger than those with low affinity, indicating that the addition
of complementary functional groups is likely to improve the affinity of an enzyme inhibitor. However, this
process may not be as fruitful for ligands of nonenzymes. High- and low-affinity ligands of nonenzymes are
nearly the same size, so modest modifications and isosteric replacement might be most productive. The
inherent differences between enzymes and nonenzymes have significant ramifications for scoring functions
and structure-based drug design. In particular, nonenzymes were found to have greater ligand efficiencies
than enzymes. Ligand efficiencies are often used to indicate druggability of a target, and this finding supports
the feasibility of nonenzymes as drug targets. The differences in ligand efficiencies do not appear to come
from the ligands; instead, the pockets yield different amino acid compositions despite very similar distributions
of amino acids in the overall protein sequences.

Introduction

Both enzymatic and nonenzymatic proteins can bind small
molecules, but enzymes catalyze reactions and have a funda-
mentally different role from nonenzymes, which may have an
impact on their recognition of ligands. Do these two types of
binding events have the same physical characteristics? Further-
more, are there any differences between high-affinity complexes
and weaker binding events that can be linked to their physical
contacts? To answer these questions, physicochemical patterns
were mined from our protein-ligand database Binding MOADa

(Mother of All Databases), where MOAD is pronounced “mode”
as a pun on a ligand’s mode of binding.1,2

Binding MOAD is the largest curated database of high-
resolution protein-ligand complexes from the Protein Data
Bank (PDB).3 Although it only reflects proteins that can be
crystallized, these are the exact systems where structure-based
insights will be used. The PDB is the source of all structures
used for docking and scoring development by academics.
However, the data used here are significantly larger than most
sets used to develop existing scoring functions, which are
typically sets of <300 complexes of <50 unique proteins. We
use 2214 structures: 1790 enzymes and 424 nonenzymes (512
unique enzymes and 176 unique nonenzymes). This study
provides an important benchmark of the current landscape
available from structural biology (incomplete and/or biased as
it may be).

For this study, we have compared distributions of various
properties between four classes of protein complexes. Distribu-

tion analysis is used widely in many fields, and it is important
to stress that it does not define “absolute rules” nor are the data
presented as such. These are general guidelines and, of course,
there will be exceptions to those trends. Distribution analysis
can show that “men are taller than women” and “women live
longer than men.” Those trends are true even though some
women are 6 ft tall and some men live to 100.

Empirically derived rules can be very useful in discovering
and applying new principles in chemistry. One of the most well-
known examples is Lipinski’s Rule of Five, which describes
the physical properties of orally available drugs.4,5 These rules
provide general guidelines for size, lipophilicity, and hydrogen-
bonding characteristics that correlate with the likelihood that a
molecule can be orally absorbed into the body. The findings
are based on distribution data of the chemical characteristics of
orally absorbed molecules going into phase-II testing. The data
set is biased by issues outside of pharmacokinetics such as the
need for good synthesis (not just accessible chemistry, but few
steps in high yield) and market considerations (completely
economic, no basis in the thermodynamics of protein-ligand
binding). The rules do not hold for natural products, actively
transported molecules, molecules that require metabolism for
activation, or most antibiotics, antifungals, vitamins, and cardiac
glycosides. There are plenty of molecules in Lipinski space that
are not drugs, and many molecules outside that space that are.
Despite these limitations and biases, the Rule of Five is used
widely in the pharmaceutical industry.

We hope that the present work will also aid drug discovery.
In this study, we provide new patterns that describe high-affinity,
protein-ligand binding and outline differences between enzymes
and nonenzymes. Of course, there will be examples that fall
outside the typical pattern, but these relationships provide a good
description of the general landscape that structural biology can
provide at this time. We expect that our understanding will grow
as more structures become available through the various protein
structure initiatives.6 These guiding principles may be useful
in designing targeted libraries for drug discovery and improving
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scoring functions. They are also important to advancing our
fundamental understanding of chemical biology, protein-ligand
binding, and the biophysics that dictate molecular recognition.

Noncovalent, small molecule binding is a tradeoff between
the enthalpy gained by making specific contacts between
functional groups of the ligand and the protein and entropy lost
by forcing the ligand and protein into a specific conformation.7,8

Because this study uses crystal structures, it is difficult to fully
account for the effect caused by entropy. However, it is possible
to determine the physical characteristics of the small molecule
and the protein that leads to the binding affinity.

Other studies9,10 have noted an inherent limitation in mining
protein structures for physical characteristics of binding. When
a pocket is discovered on a protein surface, it is difficult to
identify whether it is a true binding site or if it is capable of
high-affinity binding appropriate to represent druglike binding.
This study does not suffer from these limitations; all sites have
been curated to ensure that they are true binding pockets, and
the high-affinity complexes are separated from those with low
affinity.

Only complexes with binding data (Kd, Ki, or IC50) were used
for this study. No complexes in MOAD are annotated with Km

data, so almost all ligands are inhibitors, agonists, or antagonists
(a small number are cofactors, 5%, included only for systems
were affinity data is appropriate). We specifically focused on
the contacts between the ligand and the protein, excluding any
structure with poorly defined contacts such as missing atoms
from under-resolved density or ligands and side chains resolved
in multiple orientations. Distributions of ligand size, buried
surface area (BSA), exposed surface area (ESA), and other
physical characteristics were examined for statistically significant
differences between four subsets of the complexes: high-affinity
binding to enzymes, high-affinity nonenzymes, low-affinity
enzymes, and low-affinity nonenzymes. A common metric to
evaluate lead compounds is ligand efficiency.11-14 In this study,
ligand efficiencies for the different classes of proteins are
reported as affinity per size (-∆G bind divided by the number
of non-hydrogen atoms) and per the degree of contact between
the ligand and the pocket (-∆G bind/BSA).

Here, we focus on the most significant differences between
molecular recognition of tight and weak binding to enzymes
and nonenzymes.

Methods

Data for this study come from the largest comprehensive database
of protein-ligand crystal structures with binding data, Binding
MOAD. The latest version of Binding MOAD was created from
structures released on 12/31/2006 or earlier; it contains 9836
complexes, comprising 3151 unique protein families binding to
4659 unique ligands. The great care taken in curating this data set
has been outlined elsewhere,1 but it should be noted for these
purposes that ∼9000 crystallography papers have been examined
to determine the appropriateness of every ligand (crystallographic
additives, post-translational modifications, and covalently bound
ligands are excluded from consideration). From these efforts,
binding affinity data is available for 30% of the entries, with a
preference for Kd data over Ki data over IC50 values. The affinities
were converted to free energies of binding by ∆Gbind ) RT × ln(Kd)
or simply approximated by ∆Gbind ) RT × ln(Ki or IC50) with a
temperature of 298 K.

High-affinity binding was defined as Kd, Ki, or IC50 e 250 nM
(∆Gbind e -9 kcal/mol), which is approximately the average of all
the complexes with binding data in Binding MOAD. Enzyme
complexes were defined from the enzyme classification number in the
PDB file. The nonenzymes were annotated by hand using keywords
reported in the remarks section of the PDB entry. Binding MOAD’s

high-affinity nonenzymes and enzymes are listed in the Supporting
Information. All complexes and binding data are available at the
Binding MOAD Web site, www.BindingMOAD.org.

To calculate surface areas, BSA and ESA were calculated with
GoCAV using radii based on united-atom OPLS parameters.2 This
code reports buried molecular surface area (MSA) of the pocket
and also defines ESA of the binding site, bounded by the 3D
coordinates of the ligand.

The SlogP for the ligands was calculated using MOE15 based
on the method developed by Wildman and Crippen.16 For the 2D
and 3D descriptors calculated with MOE, the idealized SDF files
from the PDB were used if available; otherwise, the coordinates
of the ligand from the protein’s structure were taken. Hydrogens
were added with MOE. In an effort to identify any differences, all
2D and 3D ligand characteristics available within MOE were
compared for the four groups of complexes: high-affinity enzyme,
low-affinity enzyme, high-affinity nonenzyme, and low-affinity
nonenzyme.

Statistical Analysis. Statistical significance was assessed with
the programs SAS17 and JMP.18 Initial assessments used JMP to
calculate all pairwise correlations for the over 200 descriptors
calculated. For the descriptors showing interesting trends, the
significance of the differences between the distributions of physical
properties were determined by the Wilcoxon rank-sum test, which
is most appropriate given the non-Gaussian distributions of the data.
We also performed one-way ANOVA, two-way ANOVA, and
Tukey-Kramer HSD tests between the four classifications. Because
these second series of tests require near-normal distributions, the
square-root transform was applied to reduce the skew and bring
the distributions closer to normal. For the important descriptors,
distribution analyses from JMP are included in the Supporting
Information (Supporting Information, Figures S1-S7), and each
includes the mean, median, quantiles, distribution histogram, and
outlier box plot. The results of the Tukey-Kramer HSD test are
presented in Supporting Information (Supporting Information,
Tables S1-S5).

Histograms of the distributions of ligand size were binned in
increments of 5 heavy atoms. Distributions of BSA and ESA were
binned by 50 Å2. Those plotting ligand efficiency were binned by
0.1 kcal/mol-atom for affinity per size or 10 cal/mol-Å2 for affinity
per degree of contact. Distributions of SlogP were binned by 2 log
units. These bin sizes were in proportion to the size of the data
sets and were consistent with those automatically generated by JMP.

Results and Discussion

Considerable effort was made to determine direct mathemati-
cal relationships between affinity and surface area, ligand size,
or other characteristics of protein-ligand interactions, but there
was no global correlation across all complexes. Recent work
by Coleman and Sharp19 based on the PDBbind data set20 also
found no correlation between affinity and surface area or depth
of the binding pocket. Inspired by analyses of distributions of
ligand efficiencies from screening data,11 we changed our
approach and focused on distributions of the properties between
subsets of protein-ligand complexes.

Table 1 outlines the characteristics that differ between high-
affinity and low-affinity binding for enzymes and nonenzymes;
all emphasized differences in the data sets have a statistical
significance >99.99% (p < 0.0001) based on a two-tailed,
Wilcoxon rank-sum test. Figure 1 shows a comparison between
each of the subsets of complexes, examining the distribution
of ligand sizes, BSA, SlogP, and ESA. Many of the low-affinity
complexes have ∼300 Å2 of BSA, but the high-affinity
complexes display more contact. It has been estimated that
druglike binding sites have ∼300 Å2 of solvent-accessible
surface area (SASA).9 Our measurement for BSA is based on
MSA, and so the slightly higher values of the high-affinity
complexes are appropriately comparable.9
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Different Approaches for Improving Inhibitors of
Enzymes versus Nonenzymes. For enzymes, there is a sig-
nificant difference in the size of the ligands in high- and low-
affinity complexes (Figure 1a). High-affinity ligands are much
larger (11 more non-hydrogen atoms). However, nonenzymes
display very little difference in the size of the ligands between
high-affinity and low-affinity complexes (Table 1, Figure 1b).
These differences do not come from any influence of the
inclusion of cofactors in the set. The medians are nearly
unchanged if they are removed from the data set (see Supporting
Information, Table S6).

Sizes of the ligands point to a strong difference in the
complexes, particularly in how to improve an inhibitor for
enzymes versus nonenzymes. To improve the affinity of an
enzyme inhibitor, it appears fruitful to add functional groups
to increase the complementary contact between the inhibitor
and the protein. In contrast, improving ligands for nonenzymes
may best involve conservative changes that maintain the ligand’s
size. Tight binders for nonenzymes are less exposed than the
low-affinity ligands, making them more sequestered from the
surrounding solvent (Table 1). Distributions of the calculated
octanol/water partition ratios (Figure 1a,b) show that high-
affinity ligands are more hydrophobic than those with low
affinity, but there is no significant difference between enzymes
and nonenzymes in this regard. It appears that “adding grease”
equally improves binding to both enzymes and nonenzymes,
consistent with a general desolvation effect.7

The above trends for improving inhibitors for enzymes versus
nonenzymes come from observing patterns across different
proteins (interprotein relationships), but information to improve
inhibitors for a specific target must come from observing trends
of one protein binding a variety of ligands (intraprotein binding
trends). This is a more difficult comparison to make because
few proteins are crystallized with a significant range of bound
ligands. For the few that exist, we must divide them into
enzymes and nonenzymes, further reducing the sizes of the
available data sets. The findings below are qualitative in nature.

Overall, our data show that enzymes appear to have better
correlations between size and affinity than nonenzymes.

To determine a relationship between ligand size and affinity
within a protein family (Figures 2 and 3), the complexes were
grouped by 100% sequence identity. This organization ensures
that changes in affinity are the result of changes in the ligand
and not a mutation within the binding site. (For a few proteins,
we were able to combine two sets when the mutations were far
from the active site and inconsequential.) Groups that contained
g5 complexes were examined. For nonenzymes, there were only
a few proteins available: oligopeptide-binding protein, glutamate
receptor 2, estrogen receptor R, estrogen receptor �, arabinose-
binding protein, mannose-binding protein, maltose-binding
protein, and src SH2-binding domain. For most of the nonen-
zymes, the ligands are very similar in size and affinity. Six of
the eight proteins have a small range of ligand sizes, which
shows little correlation to affinity (Figure 2a,b). The small range
of observed ligand sizes supports the idea that conservative
changes are most appropriate for trying to improve ligands for
nonenzymes. However, the lack of a distinct trend between
ligand size and affinity does not necessarily prove that a trend
could not be observed. It is unclear if the small range of ligands
is the result of the specificity of the protein systems or whether
more diverse complexes are simply not available from the PDB.

Only maltose-binding protein (Figure 2c) and the nonenzy-
matic site on the SH2 domain of pp60src tyrosine kinase (Figure
2d) have a significant range of ligand sizes. The maltose-binding
protein complexes contain sugar chains of varying length.
Almost all bind with roughly the same affinity, and this may
be explained by the fact that the larger ligands show little
difference in the BSA contact despite the very large range of
sizes. The nonenzymatic site on the SH2 domain of pp60src
tyrosine kinase is the only nonenzyme complex showing some
correlation between ligand size and binding affinity. It is
interesting that the only exception in nonenzymes is a regulatory
site on an enzyme. These linear correlations reflect a trend across
several ligands, ∆(∆Gbind/size), which is slightly different than

Table 1. Characteristics of Protein-Ligand Binding for Enzymes and Nonenzymes in the Full Dataseta

median physical
properties

low affinity
>250 nM ∆Gbind

> -9 kcal/mol

high affinity
e 250 nM ∆Gbind

e -9 kcal/mol
comparisonb

enzymes 1048 complexes 742 complexes

high-affinity ligands are 52% larger
and more hydrophobic

∆Gbind -6.6 kcal/mol -10.9 kcal/mol
sizec 21 atoms 32 atoms
BSA 305 Å2 419 Å2

ESA (%ESA)d 87 Å2 (22%) 144 Å2 (24%)

SlogP 0.3 2.4

-∆G bind/atom 0.31 kcal/mol-atom 0.36 kcal/mol-atom
-∆G bind/BSA 21 cal/mol-Å2 26 cal/mol-Å2

nonenzymes 234 complexes 190 complexes

Low-affinity ligands are three times
more exposed and more hydrophilic

∆G bind -7.2 kcal/mol -10.4 kcal/mol
sizec 22 atoms 25 atoms
BSA 265 Å2 361 Å2

ESA (%ESA)d 118 Å2 (33%) 45 Å2 (11%)

SlogP -2.2 1.5

-∆G bind/atom 0.28 kcal/mol-atom 0.41 kcal/mol-atom
-∆G bind/BSA 22 cal/mol-Å2 31 cal/mol-Å2

comparisonb Nonenzymes have 17% greater
ligand efficiencies

in enzymes, high-affinity
in nonenzymes, low-affinity

a Values presented are medians for each population. b All differences noted in the comparisons sections have a statistical significance of >99.99% (p <
0.0001). c Ligand size is given in the number of non-hydrogen atoms. d Percent exposure is ESA/(ESA + BSA).
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the ligand efficiency of an individual ligand, ∆Gbind/size. In the
discussions below, we will use the terms “trend” or “correlation”
when comparing across several ligands bound to the same
protein, ∆(∆Gbind/size).

In the case of enzymes in MOAD, 37 proteins were available
with five complexes or more. Unlike nonenzymes, over half of
the families showed correlations between size and affinity. For
brevity, only seven examples of MOAD’s enzymes are given
in Figure 3. One of the most interesting features of the data in
Figure 3 is that the slopes, the overall trend for each set,
significantly vary! Although a linear correlation can be found
for a good number of enzymes, the additive contributions of
more functional groups appear to be system dependent, with
some contributions being rather small. The trends range from
0.44 kcal/mol-atom for carboxypeptidase A (Figure 3b) to 0.09
kcal/mol-atom for FK506-binding protein (Figure 3f). Most

scoring functions use additive terms, and these findings under-
score the difficulty in developing a universal scoring function
appropriate for all protein systems. Yang et al. have also noted
these difficulties in development of their M-Score scoring
function.21

However, for 11 enzymes, there was no correlation; the
ligands had roughly comparable affinity and sizes, much like
the nonenzyme examples. Three enzymes showed a very small
range of ligand sizes and a large range in binding affinity
(Supporting Information). It is debatable whether these trends
are exceptional examples of the correlation expected for
enzymes or whether they indicate cases where only conservative
changes in sizes are allowed, as would be expected for
nonenzymes. It is also possible that they result from an unusual
set of ligands from one chemical class.

Figure 1. Comparisons of (A) enzyme complexes, (B) nonenzyme complexes, (C) high-affinity complexes, and (D) low-affinity complexes are
presented. High-affinity enzymes are shown in dark blue, and low-affinity enzymes are in green. High-affinity nonenzymes are in red, and low-
affinity nonenzymes are in gold. Distribution of ligand sizes (number of non-hydrogen atoms), buried surface area of the pocket (Å2), SlogP, and
exposed surface area (Å2) are given in normalized percent frequencies. P-values show the significance of the difference in the medians of the
distributions, as determined by a two-tailed Wilcoxon rank-sum evaluation (insignificant differences have p > 0.05).
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Although Babaoglu and Shoichet have used fragments of
inhibitors of �-lactamase to show that ligand efficiency is not
necessarily additive within a binding site,22 fragment-based
design often couples these small building blocks in the pursuit
of high-affinity ligands.23 From our data above, one might expect
greater success for this strategy when targeting enzymes where
increasing size generally leads to increasing affinity. A recent
study by Hajduk compared fragment-based design for 14
enzymes and four nonenzymes to show that ligand efficiency
remained rather constant as the optimal leads were increased
in size.24 The contributions were roughly additive for the best
functional groups. The average trend across these systems was
0.3 kcal/mol-atom, with individual systems showing trends from
approximately 0.23 to 0.51 kcal/mol-atom (reported as binding
efficiency indices of 11-28 pKd units per MW in kDa). It is
encouraging that the values are comparable to the ligand
efficiencies reported in Table 1.

Hajduk’s trends were presented for the most efficient ligands
for each protein, emphasizing the most ideal cases of improving
a ligand.24 However, his data for Bcl-xL, a nonenzyme with a
large binding cleft, showed that many changes will not be
optimal. A detailed analysis for >2300 additional molecules
showed that many had significantly lower efficiencies. In fact,
he suggests that chemical modifications that reduce the ligand
efficiency by >10% deviate too much from the ideal and
indicate that either the location or chemical nature of the
modification is less desirable.

The HIV-1 protease data (Figure 3g) shows that there is a
large scatter of inhibitor sizes and affinities, but two subsets of
data (from mutants of HIV-1 protease) show strong linearity.
This could demonstrate the same issue seen in Hajduk’s detailed
analysis of Bcl-xL.24 The full set of data shows wide scatter
and little trend, but a carefully chosen subset could reveal
idealized trends for a particular protein system or class of ligands
from a specific synthetic series. For HIV-1 protease, the
compensation between enthalpy and entropy can be hard to
control. Lafont et al. have demonstrated that an increase in size
from the inhibitor (4R)-N-[(1S,2R)-2-hydroxy-2,3-dihydro-1H-

inden-1-yl]-3-[(2S,3S)-2-hydroxy-3-[[(2R)-2-(2-isoquinolin-5-
yloxyethanoylamino)-3-methylsulfanyl-propanoyl]amino]-4-
phenyl-butanoyl] -5 ,5-dimethyl-1 ,3- th iazol id ine-4-
carboxamide (KNI-10033, 1) to the inhibitor (4R)-N-[(1S,2R)-
2-hydroxy-2,3-dihydro-1H-inden-1-yl]-3-[(2S,3S)-2-hydroxy-3-
[[(2R)-2-(2-isoquinolin-5-yloxyethanoylamino)-3-methylsulfonyl-
propanoyl]amino]-4-phenyl-butanoyl]-5,5-dimethyl-1,3-
thiazolidine-4-carboxamide (KNI-10075, 2) did not increase
binding affinity despite a more favorable enthalpy from a strong
hydrogen bond.25 The entropic penalty of changing a thio ether
(two heavy atoms) in 1 to a sulfonyl group 2 (four heavy atoms)
is responsible for the lack of change in binding affinity. That
study noted that, although others have been able to optimize
certain HIV-1 protease inhibitors with respect to enthalpy, the
enthalpy-entropy compensation could make optimization of
affinity impossible for some chemical series.

An important caveat should be considered in the preceding
discussion. It is possible that strong correlations between size
and affinity can only be easily determined for large binding sites.
Large ligands can be truncated to provide smaller, weaker
ligands that bind to subsites. This would give a wide range of

Figure 2. Limited correlation is seen between size and affinity in
nonenzymes (A and B). The proteins with “clusters” of points have
smaller binding sites and no ligands over 40 non-hydrogen atoms. The
ligands have similar sizes and affinities for oligopeptide-binding protein
(OBP), glutamate receptor 2 (GluR2), and mannose-binding protein
(MBP), arabinose-binding protein (ABP), and estrogen receptors (ER)
R and �. The only nonenzymes with a range of ligand sizes are maltose-
binding protein and the nonenzymatic site on the SH2 domain of pp60src
tyrosine kinase (C and D, respectively).

Figure 3. Many examples are available of enzyme complexes that
show a strong correlation between size and affinity of the ligands; seven
are given here (A-G). HIV-1 protease (G) demonstrates that a large
collection of ligands may show no correlation, but subsets of data may
reveal strong trends (data for the C95A and Q7K/L33I/L63I mutants).
It is interesting that even small binding sites with ligands of 40 non-
hydrogen atoms or less (B,C,D) show a linear trend with affinity; this
was not seen for nonenzymes with small binding sites.
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ligand sizes and affinities, allowing a definite size-affinity
relationship to emerge from the data. It may be more difficult
to determine a trend for a small binding site. This would still
imply that enzyme inhibitors are more likely to be improved
through the addition of functional groups simply because the
binding sites in enzymes are generally larger than those of
nonenzymes. However, if this were the case, the trend would
be due to the size of the binding site and not necessarily the
protein’s basic function.

Although the size argument above is important to note, it is
most likely not the cause of the difference between enzymes
and nonenzymes. Several examples of smaller binding sites,
characterized by ligands of 40 non-hydrogen atoms or fewer,
are presented in Figures 2 and 3. For small nonenzymes, there
are no proteins that show a correlation between size and affinity.
Conversely, there are several enzymes with small binding sites
that do show a good correlation of increased affinity with
increased size.

Ligand Efficiencies. Distributions of ligand efficiencies are
given in Figure 4. Ligand efficiency based on contact (-∆G
bind/BSA) can be compared to established values for the
desolvation effect. The free energy of transferring a hydrophobic
molecule from a hydrophobic solvent into water has been
estimated as 24-47 cal/mol-Å2, with the higher value being
the most widely accepted.26-28 Honig and co-workers have
noted that this is lower than the value of 72 cal/mol-Å2, derived
from the surface tension of a hydrocarbon-water interface.28

Only 0.8% of the complexes in this study have ligand efficien-
cies that exceed 72 cal/mol-Å2 (i.e., greater than Honig’s value),
and many have efficiencies ranging between 20 and 40 cal/
mol-Å2. The low-affinity complexes are roughly bounded by
the 47 cal/mol-Å2 value (only 4.1% have greater efficiencies),
but the high-affinity complexes have large populations greater
than that value. Although the complexes in Binding MOAD
are not exclusively driven by hydrophobic association, these
values provide a yardstick for comparisons. However, it should
be noted that the range of values from the literature are based
on SASA of small molecule ligands in differing environments,
and our values are based on MSA of the contacts within the
pockets. While the comparison is not ideal, MSA-based values

for ligands are not prevalent in the literature, and SASA of a
pocket is not equivalent to SASA of a ligand.

For low-affinity complexes, the ligand efficiencies are basi-
cally the same for enzymes and nonenzymes (Table 1, Figure
4b). However, the differences are significant in high-affinity
complexes (p < 0.0001 for both efficiencies). The ligand
efficiencies for high-affinity, nonenzyme complexes are ∼17%
greater than those of high-affinity enzyme complexes (Table
1). Nonenzymes in Figure 4a show a broader distribution of
efficiencies and much higher populations above 0.4 kcal/mol-
atom (55% of high-affinity nonenzyme complexes vs 37% of
high-affinity enzyme complexes) and 30 cal/mol-Å2 (51% of
nonenzymes vs 35% of enzymes). On aVerage oVer the high-
affinity complexes, eVery atom and square Ångstrom of buried
caVity surface is worth more free energy in nonenzymes!

The differences in efficiencies between high-affinity enzymes
and nonenzymes are not dependent on the choice of cutoff
between high- and low-affinity complexes. Even if the full set
of enzymes is compared to the full set of nonenzymes, the ligand
efficiencies are better for nonenzyme complexes. For the 1790
enzyme complexes, the median ligand efficiencies are 0.33 kcal/
mol-atom and 23 cal/mol-Å2; the median ligand efficiencies for
the 424 nonenzymes are 0.36 kcal/mol-atom and 26 cal/mol-
Å2.

The same patterns for enzymes and nonenzymes are observed
when redundancy is removed (Supporting Information, Table
S7, Figures S8 and S9). This is important because it corrects
for some biases in the data set by using only one complex of a
protein (some proteins have hundreds of entries and are heavily
represented in the PDB). The nonredundant data set in Binding
MOAD is obtained by grouping the proteins into families of
90% sequence identity and representing that family by the single
complex with the highest-affinity ligandsin essence, the optimal
binding event available for that individual protein. There are
688 unique complexes in this data set, 512 enzymes and 176
nonenzymes. Again, the high-affinity enzymes (235 complexes)
have poorer ligand efficiency than the high-affinity nonenzymes
(85 complexes). For the nonredundant data sets, the median
ligand efficiencies for high-affinity enzyme complexes are 0.39
kcal/mol-atom and 28 cal/mol-Å2. The median ligand efficien-
cies for the nonredundant, high-affinity, nonenzyme complexes
are still larger at 0.44 kcal/mol-atom and 34 cal/mol-Å2. The
smaller number of complexes produces nearly identical distribu-
tions, and although the p-value of the comparison is slightly
poorer (p ) 0.04), it is still significant (96%).

Efficiencies, Evolution, and Druggability. The significant
differences in ligand efficiencies suggest a differentiation in the
binding sites of these two classes of proteins based on their
function. This may reflect the different evolutionary pressures
upon enzymes and nonenzymes. The higher ligand efficiencies
of nonenzymes make them, in essence, more responsive to low
concentrations of ligand molecules. This is fitting, given their
roles in signaling and regulatory control of cellular function in
response to stimuli. Conversely, enzymes are optimized to bind
molecules, change them, and release them again.

Ligand efficiencies are one key factor in describing the
druggability of a target. Does this imply that nonenzymes may
be more druggable? In general, higher ligand efficiencies mean
that druglike affinities can be obtained with smaller molecules.
Smaller molecules would tend to provide better oral absorption
and fewer functional groups for toxicity concerns.10,29-31 Of
course, ligand efficiencies reflect “bindability”, and it is
important to recognize that there are additional properties that
make a protein a suitable drug target. It must be essential to

Figure 4. Distribution of ligand efficiencies per size (-kcal/mol-atom)
and per contact (-cal/mol-Å2), given in normalized percent frequencies.
Distributions present comparisons of (A) high-affinity complexes (p
< 0.0001 in both cases) and (B) low-affinity complexes. High-affinity
enzymes are shown in dark blue, and low-affinity enzymes are in green.
High-affinity nonenzymes are in red, and low-affinity nonenzymes are
in gold.
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the disease state. Leads must show selectivity to avoid any
negative consequences of off-target binding events. There are
a myriad of ADME and pharmacokinetic properties to be
considered. However, the differences in ligand efficiencies do
indicate a greater likelihood to have better druglike properties
for inhibitors, agonist, and antagonists of nonenzyme targets.

Many nonenzymes are the subject of intense drug discovery
efforts in both the private and public sectors; for instance,
hormone receptors, signaling proteins, and transcription regula-
tors are targets for anticancer treatment.32,33 Recent discussions
on the druggability of protein-protein interfaces note that these
difficult targets may be more amenable than originally thought.34,35

Small molecules have been developed that bind to key hot-
spot regions with greater efficiencies and deeper burial than the
natural partner. Furthermore, many of the nonenzymes not
represented in the PDB are membrane-bound receptors. Even
though they are not included here, it is likely that the additional
information would support the hypothesis that nonenzymes are
more druggable because they are the target of many drugs.
G-protein coupled receptors alone constitute 30% of the drugs
on the market,30 and genomic analysis has indicated many more
receptors are druggable.36

Our results are also in good agreement with a recent study
that estimated the druggability of 1096 nonredundant human
proteins.10 The predictions used a statistical model trained on
NMR-screening data using a small fragment library.37 Four of
the top six classes were nonenzymes: vitamin-binding, steroid-
binding, lipid-binding, and nucleotide-binding proteins.10 The
nonenzymes that were predicted to be the least druggable were
large macromolecular complexes and are not reflected in
Binding MOAD and this study.

What Produces the Higher Ligand Efficiencies in
Nonenzymes? Obviously, the root cause of the disparity in
ligand efficiencies between enzymes and nonenzymes is of
paramount interest. Although the ligands for nonenzymes are
smaller, the SlogP characteristics are roughly the same for high-
affinity ligands of enzymes and nonenzymes (Figure 1c). If the
ligands are chemically similar, then the difference in efficiencies
must come from the protein pocket. The most significant
difference is the degree of exposure for ligands of nonenzymes
versus enzymes. High-affinity ligands have a median exposure
of only 11% in nonenzymes but 25% in enzymes (note that
%ESA are used instead of ESA to correct for the difference in
sizes of the ligands). Low-affinity ligands for nonenzymes are
significantly more exposed (median of 33%), even more than
the low-affinity ligands for enzymes (22%). Tight and weak
inhibitors have the same degree of exposure in enzymes, but
tight ligands for nonenzymes are much more encapsulated than
the weak ligands (p < 0.0001). Other 2D and 3D ligand
descriptors displayed no significant patterns. This comparison
was cognizant of correlations between characteristics; for
instance, differences in surface area are correlated to size and
were not “double counted” as additional differences between
high-affinity ligands of enzymes vs nonenzymes.

Amino acid composition of the binding sites was examined
(Figure 5, left column). There is little difference between the
binding sites of high- and low-affinity enzyme complexes. The
largest differences are an increase in Val content in high-affinity
enzymes and an increase in Arg in the low-affinity complexes.
For enzymes, the hydrophobic residues (Ala through Trp) in
Figure 5 are 47.0% of the binding sites for high-affinity
complexes but 43.9% for low-affinity ones. This is fitting with
the aforementioned finding that the high-affinity ligands are
slightly more hydrophobic. The comparison between binding

sites of high- and low-affinity nonenzyme complexes shows
more pronounced variation but also holds the general pattern
of high-affinity complexes having more hydrophobic content.
The Ala-Trp residues are 55.9% of the binding sites for high-
affinity complexes but 43.2% for low-affinity ones. What is most
interesting is the comparison between enzymes and nonenzymes,
particularly for the high-affinity complexes. The hydrophobic
content is higher for nonenzymes (55.9% vs 47.0%), but the
reader should recall that there is no significant difference in the
SlogP of the ligands (in fact, the median value for nonenzymes
is more hydrophilic). Why are more hydrophobic sites recogniz-
ing slightly more hydrophilic molecules with better affinity?
The answer may lie in the fact that the amino acids making the
contacts are significantly different. In high-affinity nonenzymes,
Leu and Met provide a large portion of the hydrophobic contacts
at the expense of Val and Ile. The nonenzyme’s preference for
Glu over Asp is reversed in high-affinity enzyme complexes,
yet the use of Lys and Arg is the same. Leu, Met, and Glu are
larger than their counterparts Val, Ile, and Asp. It is possible
that those residues are slightly more polarizable. (Confirmation
will have to come from in-depth examinations of fully modeled
complexes, inclusive of added hydrogens, detailed atom typing,
and possibly polarizable force fields. To do this for thousands
of complexes is a sizable effort and outside the scope of the
present study.) It should be noted that differences in the binding
sites are not correlated with differences in the overall amino
acid content; the reader should compare the left and right
columns in Figure 5. Leu, Met, Phe, Tyr, and Trp make up
nearly the same percentage of residues in the protein sequences
but not the binding sites. This selective placement of differing
residues within binding pockets may have direct relevance to
analyses of hot-spot regions and potential binding sites on
proteins.38-40

Most Druggable Enzymes. Of course, many pharmaceuti-
cally relevant targets are enzymes. By no means is it suggested
that they are not appropriate drug targets, especially when they
constitute 47% of the drugs on the market30 and a large
percentage of new targets identified through genomic analysis.36

The distribution of ligand efficiencies for the enzyme classes
suggests that lyases and oxidoreductases are the most druggable
enzymes, Figure 6. The distribution of lyases is significantly
shifted to higher efficiencies, standing out from the other data.
The better efficiencies for oxidoreductases come from an
increased population in the tail of the distribution. The median
ligand efficiencies for the 139 lyases are 0.50 kcal/mol-atom
and 33 cal/mol-Å2; and the median ligand efficiencies for the
256 oxidoreductases are 0.39 kcal/mol-atom and 26 cal/mol-
Å2. The 1395 enzymes from the other four classes have median
efficiencies of 0.31 kcal/mol-atom and 23 cal/mol-Å2, which
are significantly lower (significance of g99.99% using the
Wilcoxon test). It should be noted that the two enzymes that
were predicted to be most druggable in the aforementioned study
were also lyases and oxidoreductases, in that order.10

Recently, a new method was introduced to predict drugga-
bility of a binding site by estimating the site’s maximum Kd

based on the percent hydrophobic SASA and a scaling factor
for efficiency that is dependent on the curvature of the site.9

The model was trained on eight enzymes and applied to 63
structures, comprising complexes of 26 enzymes and a single
structure of the nonenzyme mdm2.41 An important goal of the
study was to fit a predictive equation to assess druggability of
a site based on protein-ligand structures of orally available
compounds. This feature of the study is important to note
because the contributions of various physical characteristics
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Figure 5. The binding sites (left) and the entire protein sequences (right) are analyzed for amino acid content. Distributions are given in normalized
percent frequencies. Amino acids within 4 Å of the ligands are considered to comprise the binding site. Distributions of (A and B) low- and
high-affinity complexes of the same class show smaller differences than comparisons between enzymes and nonenzymes (C and D). Amino acids
are listed by hydrophobic, aromatic, cationic, anionic, and hydrophilic nature. “X” denotes contacts with cofactors, unnatural amino acids, and
covalent modifications on the protein.
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within the model should reflect both high-affinity binding and
oral bioavailability of the ligand. The model was fit under the
assumption that hydrophobic desolvation is the major driving
force of binding, so terms based on electrostatics were not
included. The model was able to properly rank the training set,
noting that outliers were compounds with strong electrostatic
components, prodrugs, or ligands that are actively transported.
The model was then used to identify new, druggable structures
from the PDB. It was interesting that the two newly identified
targets were both enzymes. With only two new targets presented,
it is not clear whether the model preferentially identifies enzymes
over nonenzymes, but a preference toward enzymes may be
expected from their model given the training and test sets used.
Our data indicate that enzymes and nonenzymes may require
different models in such analyses. Furthermore, many of the
ligand efficiencies in our set exceed the established values for
hydrophobic association, indicating that the most efficient
complexes have additional factors that contribute to their affinity.
The affinity of these complexes may not be well described by
models based solely on hydrophobic SASA.

Conclusion

We have presented a substantial mining study of Binding
MOAD, the largest public database of curated protein-ligand
structures with binding data. Physical characteristics of bound
ligands were compared between enzymes and nonenzymes as
well as high-affinity and low-affinity complexes. The compari-
son between ligand sizes for low-affinity versus high-affinity
binding shows that divergent approaches are likely needed to
improve the affinity of enzyme inhibitors versus those for
nonenzymes. The traditional approach of adding functional
groups to fill more of the pocket may work for enzymes, but it
may not be as appropriate for nonenzyme systems. However,
making ligands more hydrophobic appears to aid binding in both
enzymes and nonenzymes.

Nonenzymes have higher ligand efficiencies than enzymes,
which may be a reflection of their biological roles. This is also
encouraging when considering the druggability of nonenzymes.
In the pharmaceutical industry, ligand efficiencies have become
a metric for evaluating hits from screening campaigns and even
candidate compounds.12 Our results would caution against
applying a rigid standard across all protein targets. At the very

least, a cutoff based on ligand efficiency should differ between
enzymes and nonenzymes. Ideally, cutoffs would differ between
protein families and only be considered as one of several
guidelines in a selection process.

Binding MOAD provides strong support of several math-
ematical models cited above,10,24,41 particularly those of Hajduk
and co-workers. Our results have implications for the develop-
ment of scoring functions for docking and predicting drugga-
bility of a binding site.42-45 The differences between nonen-
zymes and enzymes, as well as the differences across enzymatic
systems, underscore the challenges of developing universal
functions that perform well across all systems. Modest improve-
ment might be achieved by developing separate functions for
enzymes and nonenzymes, with even greater improvement
expected for functions trained on specific protein families.
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